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Abstract— Domestic grazing animals follow simple, scalable
rules to assign themselves trajectories to cover a pasture. We
explain how to adapt these rules for an information gathering
system based on a realistic robot motion model and Kalman-
filter based evidence grid that accounts for both bandwidth
and sensor limitations. Our results show that this algorithm
can meet or exceed the performance of state of the art field
robotics systems, particularly when scalability and robustness
to failure are required.

I. INTRODUCTION

Biological systems such as domestic grazing animals ex-
hibit efficient and effective means of gathering food from
the environment without explicit coordination or centralized
direction [1]. This foraging process is fundamentally an area
coverage task with many potential robotic applications rang-
ing from surveillance to inspection. To have similar behavior
in mobile robots, one must replace the communications
channels used by the grazers and adapt the guidance rules
to the kinetics of mobile robots.

There are two communications channels used to exchange
the data required for grazing guidance, 1) peer locations
and 2) food available. For ruminants, we assume for this
work that the peer location channel comes from the animal’s
own senses and the physical location of its peers, and the
“food available” channel comes from visual and olfactory
measurements of local plant life. In other words, members
of a herd or flock coordinate their grazing trajectories by
changing positions and eating plants. We will present elec-
tronic replacements for these channels that allow the mobile
agents access to the information they need to apply grazing-
inspired algorithms.

Small mobile robots lack the ability to measure their
peers locations accurately enough for coordination except
at relatively short ranges using special visual cues [2], and
so we assume that agents must report their positions over a
shared network. We also assume that information gathering
should not result in detectable changes to the environment.

Stable vehicle guidance requires vehicles being aware of
their reachable space, leading to another difference between
robotic grazing and its bio-inspiration. Animals appear to
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reason in a Euclidean space and subconsciously translate
desired velocities into trajectories in their limbs’ joint space,
allowing humans to guide them with simple shepherding
behaviors or remotely via electronic collars [3]. This allows
a very broad range of accelerations and automatic adaptation
to handle unreachable commands, allowing the animal’s
higher level reasoning to operate on positions and velocities
instead of complicated, constrained kinetics. We will present
steps that must be taken to allow grazing-inspired guidance
algorithms to account for vehicle mobility limits.

To constrain the design space for this study, we will as-
sume that the mobile robots each carry a downward-looking
camera and that its images can be processed on-board using
a classification algorithm to compress the data stream into
relevant information. Motivated by weather-related disasters
on both the East Coast of the United States and in the
Philippines, we will assume that the robot herd has been
deployed to evaluate the post-disaster state of a road network.

The remainder of this paper is divided into six sections.
The next section describes the background and similar work.
Section III describes how the changes in information ex-
change required for robotic applications are handled, in-
cluding the relationship between network bandwidth and
the types of information “food” the robot herd can collect.
Section IV describes our approach to translate animal grazing
trajectories into mobile robot guidance for area coverage.
The performance of the algorithm is tested using a disaster
recovery scenario in Section V and compared to flight paths
designed to maximize coverage rate in Section VI. This is
followed by a short conclusion in Section VII.

II. BACKGROUND

The most similar work to that presented here was con-
ducted by Haumann et al. [4] on cooperative frontier ex-
ploration. In this work a small team of robots built up a
map of an unknown environment by exchanging sensor data
and computing control inputs that maximize their collection
of information within a Voronoi decomposition of the space
around each robot. While they define how to explicitly assign
priority to particular regions for information gathering, they
do not discuss the mechanics of fusing sensor data from
multiple platforms.

Yamauchi [5] described an algorithm for multi-robot
frontier exploration using low-fidelity ranging sensors, and
the importance of designing the sensor and data fusion
algorithms to avoid undesired behavior. His work assumed
that the world can be represented by an information grid as



described by Thrun et al. [6], broken into discrete cells with
a finite probability of containing obstacles.

Julian et al. [7] present an information theoretic optimal
routing algorithm for a team of mobile agents collecting
information on such a grid assuming that each carries a
sensor that can be expressed as Boolean detector of the signal
of interest in each cell. This approach is too computationally
intensive for many real-time applications, particularly on
dense grids and with multiple vehicles, although Schwager
[8] provides a grid-refinement method to help limit the
computational cost. Kreucher et al. [9] used a combination
of the information gradient and physics-inspired repulsion
between agents to overcome this scalability constraint.

An alternative to the odds-based evidence grid is one that
employs a Kalman filter or similar estimator that explicitly
separates the uncertainty, generally expressed in terms of
covariance, and the estimated value of the cell. Given a map
of cell uncertainty, Yilmaz et al. [10] demonstrated a multi-
vehicle approach to finding optimal paths by expressing it as
the Selective Traveling Salesman Problem subject to dynamic
constraints. Tisdale et al. [11] utilized a receding horizon ap-
proach along with sequential planning to generate optimized
trajectories for the agents to maximize the information gain
of the team.

In their study of grazing behavior, Liu and Hedrick [1]
demonstrated that it is possible to replicate animal behavior
using velocity commands derived from the status of nearby
food and peer locations. Similar work by Balch et al.
[12] on ants and Haque et al. [13] for dolphins and lions
demonstrates similar results that suggest simple kinematic
models are sufficient to explain animal behaviors.

However, rules that result in desirable behaviors for first
order, kinematic systems do not in general converge to
good solutions for second order, kinetic systems. Yu et al.
[14] describe the conditions required to reach a consensus
using a distributed controller in this context. The need for
both reactivity and inclusion of kinetic constraints led the
authors to choose the physicomimetics algorithm developed
by Spears et al. [15] for this study.

III. COMMUNICATIONS AND DATA FUSION

Coordination of reactive foraging agents requires that
they exchange data about 1) their own locations, and 2)
information they have collected. If each agent can compute
its own location using GPS or similar technology, then
making it available to peers involves broadcasting a position
once per decision cycle. This implies that each sensor
information packet must contain the following information
at its associated size s:

• Location, sl = 3× 32bytes
• Orientation, so = 32bytes
• Uncertainty estimate, sP = 16× 32bytes

A. Sensor Design

The remaining bandwidth, bw, must be sufficient for N
robots to transmit their sensor haul of sH bytes once per
decision cycle of length ∆touter. At the extremes of the
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Fig. 1. Plot of the packet size available to robotic foraging teams

sensor haul size are high definition (HD) video, which we
will assume requires 2Mb/s for an sH = .2Mb, and a
Boolean disk per [9], with sH = 1. The maximum size
of this disc, d, was determined by the combination of
the vehicle’s altitude, h, and camera field of view α. The
minimum packet size including the sensor haul and vehicle
position information is shown in (1), and leads to team-wide
bandwidth required bw computed per (2). HD video is only
possible with a high bandwidth network such as the IEEE
802.11g wireless Ethernet protocol, the cyan line in Fig. 1;
while the Boolean disk sensor, red line in Fig. 1, allows a
large team using longer range protocols such as the 900MHz
xBee Pro.

s = sH + sl + so + sP (1)
bw = Ns/∆touter (2)

In between these two extremes are approaches that segment
the image into discrete segments as shown in Fig. 2. In
order to resolve features in the environment smaller than the
sensor’s diameter d, the sensor’s resolution, dmin, must be
at most half the size of the target signal; the minimum depth
is a function of the vehicle’s speed u and the sampling time
∆touter. The impact of using a Boolean disk vs. a Boolean
grid sensor is shown in Fig. 3; note that the false-positive
rate of the Boolean disc’s evidence grid is much higher than
the Boolean grid result.

For this study, we will assume that some overlap during
a single pass is desirable, and thus assume that the sensor
is a square, 11 × 11 grid. When the content of that grid
is a probability or percentage of occupancy, represented by
a floating point value, then sH = 968bytes; the bandwidth
requirement follows the magenta curve in Fig. 1. We found
that the best mix between sensor fusion performance and
team scalability came with a Boolean grid, where each cell
returned a binary value representing the presence of a target.
In this case sH = 121bytes, and the bandwidth required is
represented by the blue curve in Fig. 1.

B. Data Fusion

The foraging models in [1] and [4] assumed that the agent
will collect a unique sample from each point in the environ-



(a) Top View (b) Front View

Fig. 2. Schematic of downward-looking camera image segmented into
discrete regions.

(a) Log-odds Grid (b) Kalman Filter Grid

Fig. 3. Map generated by a Boolean disc sensor on a log-odds grid (left)
and Boolean grid sensor on a Kalman filtered grid (right).

ment which implies high confidence in the measurement.
However, the most interesting applications for this approach
involve inexpensive transducers and low-computation classi-
fiers in a distributed network. Thus, our approach uses an
information metric to define the amount of food available.

There are two basic options to convert the sensor data
from the camera on an agent into information: odds-based
and filter based. Odds-based techniques like [6] work well
with Boolean disc sensors, but tend to produce low-resolution
maps as shown in Fig. 3a. The information-as-food metric,
fc, is defined for each cell in (3), where p(occ) is the
probability of a cell being occupied. With this definition,
the sensors are attracted to the nearest uncertain cell. With a
log-odds grid, the cell value x̂ ∈ (−∞,∞) must be rescaled
to p(occ) using (4) which requires a computation of the
exponential function once per cycle per cell.

fc = 1− 2‖p(occ)− .5‖ (3)

p(occ) = ex̂/(1 + ex̂) (4)

The main drawback of this approach is that cells do
not always converge to a single value. Given contradictory
evidence, p(occ) may gain uncertainty and return to a value
near 0.5 after re-sampling. In other words “eating” the
information by sampling might add food to the system
instead of removing it. Frontier-based methods avoid this
problem by defining frontiers over many cells, but the
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Fig. 4. Plot of fc of a log-odds cell given Boolean measurements.

“greedy food” algorithm of [1] and the present work is
unstable if contradictory measurements are possible.

Consider the case where a field cell produces a “True”
measurement 50% of the time due to partial occupancy
or a problematic sensor. Assuming that the sensor has a
probability of detection pd and a false alarm rate of pf ,
and the kth measurement, zk, is given a value of one for
positive observation and zero otherwise; the impact of each
measurement on a cell can be expressed as (5). Using (3) to
convert this into a food value and simulating sensor inputs
allows us to predict the fc in this hypothetical field cell in
Fig. 4.

x̂k+1 = x̂k +

{
log pd

pf
if zk = 1

log
(

1−pd

1−pf

)
if zk = 0

(5)

A more accurate model of “eating” information than an
odds-based information grid is one that computes an estimate
of the percentage of occupancy of a cell using a linear
estimation process such as a Kalman filter. This has two
distinct advantages over the odds-based version: 1) it is
computationally faster since it does not involve rescaling
via an approximate exponential function and 2) it explicitly
separates the estimate from the quantity of information
available. Since our target of interest involved a static signal
source, we only considered the update portion of the filter.
Furthermore, we can assume that each cell may be computed
independently using (6) – (10). The variables used and their
values as applied to this study are provided in Table I.

Symbol Description Value
y innovation variable
H measurement model 1.0
S covariance innovation variable
P covariance variable
R Measurement noise model .8
K Kalman gain variable

TABLE I
VARIABLES AND VALUES FOR THE KALMAN FILTER CELL MODEL
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Fig. 5. Plot of fc = P of a Kalman-filtered cell with Boolean updates

y = zk −Hx̂ (6)
S = HPkH +R (7)

K = PkHS
−1 (8)

x̂k+1 = xk +Ky (9)
Pk+1 = (1−KH)Pk (10)

Using this approach, we can define the covariance of a
field cell as its available food. This lets us guarantee mono-
tonic reduction in food available with successive samples
and control the rate at which the food “regrows,” if at
all, via a defined process model. Note that this approach
computes the amount and/or probability of a target’s cell
occupancy, rather than the odds of a cell being occupied,
and converges to approximately the expected value even with
Boolean measurements, i.e. zk equal to one or zero, in Fig. 5.

IV. MOBILITY

Fig. 6. Block diagram showing the physicomimetics algorithm’s role in
providing guidance to an autonomous vehicle.

To implement the movement commands generated by
the grazing algorithm, we assumed a motion constrained
second order agent model and computed desired velocities
from the field. There are two components to consider: 1)
the agent model and 2) the field model. The goal of the
agent model is to represent the inner loop in Fig. 6 in the
physicomimetics calculations in such a way as to minimize
the error term ~e. The field model translates the instantaneous
velocity commands generated by the grazing algorithm into
forces and torques that will drive the vehicle towards “food”
without interfering with its neighbors.

Fig. 7. The guidance law

A. Agent Modeling

We based our agent model on a quadrotor helicopter such
as an ARDrone2, which can be approximated as a holonomic
particle described in [15] if, as in our case, its orientation
does not affect performance. Its maximum speed was set
to 1 m/s to limit off-design aerodynamic effects and allow
moderate wind penetration at the commanded speed.

B. Field Modeling

1) Guiding A Quadrotor Agent: In this section the guid-
ance law that guides an quasi-holonomic agent to a specific
position on the field is explained in detail. As shown in
Fig. 7, the position of the agent is denoted by x ∈ R2, and
the nearest cell with food to the agent is located at xd ∈ R2.
The desired velocity of the agent is denoted by Vd and is
defined to be proportional to the error in position with a
constant factor of α > 0, namely

Vd = α(xd − x). (11)

The virtual force applied to the agent is denoted by u and
is defined to be proportional to the difference between the
current velocity of the vehicle, ẋ, and the desired speed, Vd,
with a factor of k > 0. More specifically,

u = k(Vd − ẋ). (12)

Using a point-mass model for the agent with virtual mass
m, the input force u directly affects the 2nd derivative of
the position of the agent according to

mẍ = u. (13)

Without lost of generality, we can assume that m = 1 and
xd = 0. By substituting (11) and (12) into (13), the dynamics
of the closed-loop system can be written as:

ẍ = −kαx− kẋ. (14)

By defining

x1 = x (15a)
x2 = ẋ, (15b)

the system can be written in state-space form as[
ẋ1
ẋ2

]
=

[
0 1
−kα −k

] [
x1
x2

]
. (16)

The eigenvalues of this linear 2nd-order autonomous system
are:

λ =
−k ±

√
k2 − 4kα

2
. (17)



(a) Initial Condition (b) Lawnmower Paths (c) Grazing Pattern

Fig. 8. Initial conditions, lawnmower paths and a grazing pattern from the
simulation. The agent colors in Fig. 8b denote their differentiated roles.

Since k > 0 and α > 0, the real parts of the eigenvalues are
always negative. This shows that the guidance law results in
a stable closed-loop system for all holonomic agents.

2) De-conflicting among Agents: Collision avoidance and
area allocation are achieved using a Voronoi partition of the
space with each agent being the generator of its Voronoi cell,
as in [1] and shown in Fig. 8c. To improve the coverage
rate, we introduced an additional heuristic: When an agent
consumes all of the available information in its Voronoi cell,
its Vd commands it towards the nearest food on the field.

V. SIMULATION AND TESTING

We implemented this algorithm in the MASON [16]
simulation environment on a 960m×960m grid scaled to one
cell per meter. The search zone is 500m×800m and centered
in the field as shown in Fig. 8. The “roads” are the black tiles
and have a minimum width of 11m. Prior to each episode’s
start we simulate “damage” by reassigning randomly selected
blocks of 16×16 to be non-roads. The search zone is covered
with an information grid with cells 6m on each side whose
initial value is set to .5 and initial covariance to 1.0, both
unit-less ratios.

The agents began in a north-south line centered on their
“base” location of 150m×500m with enough fuel for 700s
of flight time, allowing them to easily complete the longest
lawnmower path in Fig. 8. The sensing model is a downward
looking camera, collecting information from a square patch
d = 50m on a side with dmin = 5m to resolve the 11m
wide roads. The agent models were advanced in time using
first order forward Euler integration. We simulated vehicle
failures by halving the initial fuel level on selected agents.
Note that simulations start with agents 50s travel time away
from where they can begin collecting data.

VI. RESULTS AND DISCUSSION

For this study, we were interested in three metrics, cover-
age, true positive rate (TPR), and false positive rate (FPR).
The coverage is measured by aggregated covariance defined
as 1 − ΣP (t)/ΣP (t = 0). A field cell was counted as a
“positive” if its estimate exceeded .1, and a true positive if
it contained one or more road tiles or a false positive if not.
The inverse logic is true for negative cells. These metrics
define the completeness and utility of the resulting roadmap.

The performance of the information gathering teams was
measured and compared over one hundred simulation runs
in the following three cases:
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Fig. 9. Mean Coverage, True Positive Rate Performance, and Time to 85%
of Change of Different Methods. Error bars indicate one standard deviation.

1) Five agents following lawnmower tracks with no fail-
ure and with 20% agent failures,

2) five agents grazing with no failure and with 20%
failures,

3) and ten agents grazing with no failures and with 20%
failures.

The coverage and TPR performance are shown in Fig. 9a
and Fig. 9b respectively. The FPR is near zero in all cases
and hence omitted.

In the lawnmower approach, each agent was attracted to
a point 100m ahead of itself along its assigned track using
the waypoint following logic in MOOS-IVP Helm [17]. The
dynamics of the agents resulted in some oscillations about
the track, but the team was still able to consistently achieve
a coverage of 97% when no vehicles failed. Figure 10c
shows that the best and worst performance at each timestep
were nearly identical. When the agent with the longest track
suffered the failure described above, coverage was reduced to
86% as shown in Fig. 9a. Note that the data quality metrics,
specifically the TPR in Fig. 9b, were statistically identical in
all cases studied.

A team of five of our grazing agents was able to “con-
sume” between 84% and 98% of the covariance depending
on the run, with an average consumption of 95% in both
the failure and non-failure cases as shown in Fig. 9a. The
substantial variance between runs reflects the impact of
MASON randomizing the order of agent progation with each
timestep. Occasionally, this would result in a cluster of agents
such as the three near the top of Fig. 8c, where one agent
would have an empty cell while chasing its peers towards
the nearest food. The net effect on the team’s performance
is similar to an agent failure.

The real power of this algorithm is its scalability. As
shown in Fig. 9a, a team that begins with ten grazing agents
will consistently achieve 99% coverage. When the failure is
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(a) Five Grazing Agents
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(b) Ten Grazing Agents
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Fig. 10. Coverage vs. time for the no failure cases. The Envelope curves
show the range of coverage at each time-step over the 100 runs, while the
Best and Worst curves show the runs resulting in most and least coverage,
respectively.

applied at 350s, the team had covered 85% of the field, as
shown in Fig. 9c, and spent the remaining half of the scenario
pursuing isolated pockets of information. With more agents,
the loss of one or two members to either a mechanical failure
or unfavorable formation had less impact on the grazing
performance.

Figure 10 shows the coverage vs. time for the cases with
no failures. Note that Figs. 10a and 10b begin with a very
tight envelope as the team spreads like a wave front until
approximately 200s, when one or more agents may have
exhausted its Voronoi cell. Since the “wavefront” with ten
agents is much wider, the impact is less severe and occurs
when the agents have already consumed nearly half the field.
Also note that the Best and Worst curves do not lie on the
Envelope until close to the end, as the team’s coverage rate
after the initial wave is a function of how widely scattered
the “food” was and thus the amount of time agents spent in
transit instead of consumption.

VII. CONCLUSION

When combined with a stable data fusion algorithm,
our grazing-inspired collaborative area coverage performed
almost as well as the state of the art in field robotic systems.
Its reactive nature ensures complete coverage given sufficient
time or additional agents. Imperfect path following due to
agent dynamics does not require a substantial re-planning
of trajectories to capture anything that was missed. Our
proposed robotic grazing algorithm scales well, allowing
large teams to accomplish information gathering tasks more
quickly.
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